Table IV
Pharmicological Activiries of 1-Aminoacyl-2,3-dihydro-4(1H)-quinazolinone Hydrochlorides

So.	$\begin{aligned} & \text { Choleretic } \\ & \text { act.... } \\ & \text { ing } / \mathrm{kg}^{a, d} \end{aligned}$	$\begin{aligned} & \text { Antifibrill } \\ & \mathrm{mg} / \mathrm{kg}^{b}, d \end{aligned}$	tory act. $\mathrm{mg} / 1 . \mathrm{I}^{\text {c. }}$	$\underset{\substack{\mathrm{LD} \mathrm{D}_{\mathrm{io}} \mathrm{~kg} \\ \mathrm{ip}}}{ }$	$\begin{aligned} & \text { Other } \\ & \text { pharmacol } \\ & \text { act. } \end{aligned}$
1	6.25	(48)	(10)	$560{ }^{\text {b }}$	
2	2.)	31	(10)	$500^{\text {h }}$	
3	(130)	41		1300	k
4	$4{ }^{5}$	(56)		$450{ }^{\text {a }}$	l, m
\%	75	(190)		1500	k
6	30	(36)		$300{ }^{\text {h }}$	l, m
7	20	(25)		200^{i}	m
8	3.5	44		$350{ }^{\text {i }}$	m
9	12.5	(31)		$250{ }^{i}$	
10	30	37		300	
11	18	(22)		180^{i}	
12	15)	10	0.81^{\prime}	$150{ }^{i}$	
13	25	31		250	
14	(2.5)	12	$1.8{ }^{\prime}$	$250{ }^{\text {i }}$	
1.)	(8)	10	$2.6{ }^{\circ}$	80	
16	(15)	(5) ${ }^{\text {e }}$		150	
17	(25)	(31)		250	
18	(28)	10	6.28	280^{i}	
19	(20)	25		$200{ }^{i}$	
20	(30)	38		$300{ }^{\text {i }}$	
21	(25)	31		2500^{i}	
22	25	16	3.37	2.50	
23	(20)	12		$200{ }^{\text {i }}$	
24	(20)	6	2.57	$200{ }^{\text {i }}$	

${ }^{a}$ Dose which increased the bile flow to 50%. Maximum tested doses were $0.1 \mathrm{LD}_{\mathrm{so}}$. Sodium dehydrocholate was active at 50 $\mathrm{mg} / \mathrm{kg}$. ${ }^{b}$ Dose which prevented the cardiac arrhythmia in 50% of animals. Maximum tested doses were $0.12 \mathrm{LD}_{50}$. Procainamide was active at $50 \mathrm{mg} / \mathrm{kg}$. ${ }^{c}$ Concentration which reduced to 50% the heart sensitivity to the electric stimulation. Maximum tested doses were $10 \mathrm{mg} / \mathrm{l}$. ${ }^{d}$ Numbers in parentheses are maximum tested nonactive doses. e Higher doses were toxic. ${ }^{\prime}$ Quinidine was active at $2.8 \mathrm{mg} / \mathrm{l}$. ${ }^{8}$ Quinidine was active at $6.1 \mathrm{mg} / \mathrm{l} .{ }^{h}$ Clonic convulsions. ${ }^{i}$ Hypnosis. ${ }^{i}$ Tonic convulsions. ${ }^{k}$ Anticonvulsant activity. ${ }^{l}$ Transient iucrease of arterial blood pressure and stimulant effect on respiration. ${ }^{m}$ Inhibition of formalin edema of the paw.
the calculated amount of ethanolic HCl to a solution of the base in ether, benzene, acetone, or EtOH , or by dissolving the base in aqueous HCl and concentrating the solution until crystallization set in. Recrystallization from a suitable solvent (see Table III) may follow.

Pharmacological Methods. Animals.-NXIRI albino mice $(18-20 \mathrm{~g})$ and Wistar albino rats ($200-250 \mathrm{~g}$) were used. For choleretic activity, 100 -day-old Wistar albino female rats, $220-240 \mathrm{~g}$, were used.

Acute Toxicity. $-\mathrm{LD}_{50}$ values were determined in mice intraperitoneally, and the mortality over 5 days was recorded. The animals were also observed for behavior and objective symptoms according to the Irwin ${ }^{15}$ scheme.

Choleretic Activity.-Female rats, fasted for 14 hr and anesthetized with urethan, were used. The substances were injected in to the duodenum. The bile flow was recorded 1 hr before and 1 hr after the administration of the compounds, by means of a graduated pipet connected to the cannulated choledochus.

Antifibrillatory Activity.-The compounds were given intravenously to rats anesthetized with pentobarbital sodium, and their ability to prevent cardiac arrhythmias induced by CaCl_{2} was determined. Active compounds were then tested on rabbit heart by the method of Visentini. ${ }^{18}$ The heart was stimulated with a frequency of $50 / \mathrm{sec}$ for 1 msec . The intensity which provoked the fibrillation was recorded before and after 20 min of perfusion with the testing compounds.

Other Tests.-All compounds were screened also for their antispasmodic activity "in vitro" following the methods described by Setnikar and Tirone, ${ }^{17}$ and for their local anesthetic activity on the mouse tail according to Bianchi's method. ${ }^{18}$ The analgetic activity was assayed in mice after oral administration, according to Bianchi and Franceschini. ${ }^{18}$ Coronary vasodilatator activity on the isolated rabbit heart following the method of Setnikar, et al.,,20 was also determined.

Antimicrobial and antifungal activity, effects on blood pressure and on respiration, anticonvulsant activity, antitussive activity, and antiinflammatory activity were determined according to the methods previously described. ${ }^{21}$

[^0]
Synthesis and Antiinflammatory Activity of 4-(p-Biphenylyl)-3-hydroxybutyric Acid and Related Compounds

D. I. Barron, P. T. Bysouth, R. W. Clarke, A. R. Copley, O. Stephenson, D. K. Vallance, and A. M. Wild
Chemical Research Laboratories, B.D.H. (Research) Ltd., London, N.1., England, and Biological Research Laboratories, B.D.H. (Research) Ltd., Godalming, Surrey, England

Received May 24, 1968

4-(p-Biphenylyl)-3-hydroxybutyric acid and about 50 related compounds are reported. The title compound showed pronounced antiinflammatory activity.

Some years ago as part of a program for the investigation of compounds related to mephenesin ($\mathrm{I}, \mathrm{R}=$ o-tolyloxy; $\mathrm{R}^{\prime}=\mathrm{OH}$) and chlorphenesin ($\mathrm{I}, \mathrm{R}=$ p-chlorophenoxy; $\mathrm{R}^{\prime}=\mathrm{OH}$), the formally related 4 -aryloxy-3-hydroxybutyric acids (I, $\mathrm{R}=o$-tolyloxy or p-chlorophenoxy; $\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{H}$) were prepared for routine biological screening.

$\mathrm{RCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{R}^{\prime}$

I
Subsequently the series was extended and the unex-
pected observation was made that 4-(p-biphenylyloxy)3 -hydroxybutyric acid showed significant antiinflammatory activity in the uv erythema and rat paw tests. A systematic study of this group of compounds was therefore made (see Table I), but a product worthy of clinical study did not emerge.
The acids described in Table I were prepared starting from the aryloxychlorohydrins ${ }^{1}\left(\mathrm{I}, \mathrm{R}=\right.$ aryloxy; $\mathrm{R}^{\prime}=$ Cl) which were converted into the nitriles ($\mathrm{I}, \mathrm{R}=$

Tables I

N,	R	R'	$\begin{aligned} & \text { 1. (sumat } \\ & \text { wive } \end{aligned}$		F.rema	Anaisem	Liverhema		
1	o-Toly	CN	13000.2			((, HI, N			
2		CO.ET	1200.1		$\left({ }_{13} \mathrm{H}_{1} \mathrm{H}_{5}()_{4}\right.$	($¢, 11$			
;		CONH:	104-105	1) + J	$\left({ }_{1} 111_{1} \mathrm{NO}_{3}\right.$	C, II, N			
4		CO H	51-52	1) +J		C, II			
i	o-Isobutylplenisy	conde	125.0.1:		(\%11\%)	(11			
${ }^{5}$		CO. 1 I	-2, -3\%	$1:+.1$	$\left({ }_{1+} \mathrm{H}_{24}\right)_{1}$	(: 11	0.1	1	
7	p-Isobutylpheny	conde	55-80	J	(\% $\mathrm{H}_{2} \mathrm{O} \mathrm{O}_{1}$	(.11			
8		CO.Il	\% 5	$\mathrm{F}+\mathrm{J}$	$\left(1_{14} \\|_{2,0}\right)_{1}$	(, 11	0	$1)$	
9	p-s-Butylphenyt	CN	149 (0.1)		$\left(\mathrm{C}_{4} \mathrm{II}_{1}, \mathrm{NO}\right)_{2}$	($\mathrm{C}, \mathrm{H}, \mathrm{N}$			
10		$\mathrm{CO}_{\text {OLP }}$	4-4.3	11	($\mathrm{CH} 1 \mathrm{l}_{2}$ ()	C, I			
11		CO.H	66-67	$\cdots+J$	(51110	(-) I	0	NT	
12		Cosile	\% \%	J	(111 Hz)	C. 11	0.0.)	$1)$	
13		(0).II	96-97	$1:+1$		($: 11$	0.09	0	
14	p - Choroplieny	CN	(6)-62	$12+11$	(\%IINCN(($6,11, \mathrm{Cl}, \mathrm{N}$			
1:		(0) 1 H	12.) 120	A	(\% $\mathrm{H}_{1} \mathrm{ClO}_{4}$	C, $11, \mathrm{Cl}$			
16	o- Bromophericl	$(\mathrm{O})_{2} \mathrm{H}$	80-x	1) +J	$\left({ }_{6} 11,13 r \mathrm{C}\right)$	(', $\mathrm{II}: \mathrm{Br}^{-}$	1	N'	
17	o-Methoxycarbonylphenyl	(N	170.0 .25		(C, II, N			
18	o-Ethoxy carbon-lphenyl	COEL	164 (0.2)		$(1) 1 \mathrm{I}_{3}$ (),	C,11	0	1	
$11)$	p-Ethoxycarbonylpheny	CN	200 (0.3)		($\mathrm{H}_{1} \mathrm{H}$	(, , H, N			
20		$\mathrm{CO}_{3} \mathrm{E}$ t	180 (0.2.5)		($\left.5: 1 \mathrm{H}_{38}\right)_{4}$	(, , 11	0	0	
21	p-Carboxpheny	CN	120-174	1) + .	($\mathrm{H}_{1} 1111 \mathrm{NO}_{4}$	(${ }^{\text {, }}$ II, N			
22		($\mathrm{O}_{2} \mathrm{H}$	216 der	1)	(11111_{2} (${ }^{\text {a }}$	(, II	0	NT	
23	o-Biphentyd	(1)	1:20 (0, 3)		($\% \mathrm{HILCO}_{5}$	(, H, Cl			
24		CN	182 (0.3)			($\mathrm{C}, \mathrm{II}, \mathrm{N}$			
2.		CONII.	1:39-141	13		C, II, N	1	$1)$	
26		CO) H	14,3-14.5	$1)+J$		C, H	0.07	0	
27	p-Biphency	(1)	95-96	J	(\%11:C10	C. 11,1			
28		CN	115-120	1) +J		C, II, -			
29		cosil:	190-192	$A+C$		C, $11 . \mathrm{N}$	1	1	
30		COIET	106-109	$A+C$		C, H	0.0.)	0.2	
31.		COSI	164-166	1)	$\left(414 \mathrm{I}_{48}\right)^{(1)}$	C, II	0.1	0.5	
32	3-Chloro-p-biphenyly	(C) $\mathrm{E}=$	$180(0.0 .5 ;$		C.11) C	C. 11			
$3: 3$		$\mathrm{CO}_{2} \mathrm{H}$	89-90	F	$\mathrm{C}_{1} \mathrm{H}_{1} \mathrm{ClO}$	C, II, Cl	0.1	$1)$	
34	3-Bromor-p-Bipheny $\mathrm{I}_{\text {- }}$	(I)	1880.0		$\left.\mathrm{C}_{1} \mathrm{H} 1_{1} \mathrm{BrCl}\right)_{2}$	Br			
3.5		CN	80-83	1) + J					
36		CO.ET	210 (0.2)		$(\because 11131)_{4}$	C, II ; Bre			
37	3,5-1)ichlorio-p-biphenyy	(1)	19000.3		($1110,(10)$	(1)			
$3 ¢$		(O) $21: 1$	$9{ }^{9}-99$	J	($\% 11, \mathrm{Cl} \mathrm{O}_{1}$	(, H, Cl			
39		$\mathrm{CO}_{2} \mathrm{I}$	111-11:3	$1+J$		(, , $1 \mathrm{I}, \mathrm{Cl}$	0	0.25	
40	p-Benzrlpheny 1	Cl	1760020		(:317-C\%	C, $11, \mathrm{Cl}$			
41		CN	(6)-6is	J	(1;11:-N0)	($\mathrm{C}, \mathrm{H}, \mathrm{N}$			
42		COEL	184:0.2)		(H_{1}	(\%)11	$1)$	0	
43		$\mathrm{CO}_{2} \mathrm{II}$	(22-94	1)	($\%$ - 1150	C, II	0.033	0	
44	p-3enzoylpheny	(1)	1980.0.1.7						
4.		CN	112-11:3	(C, 11.20	(., 11, ${ }^{\text {, }}$			
46		COEE	S0- S_{2}	C +J	(: 11.0 , $)^{\text {a }}$	C, 1I	$1)$	N'1	
47		$\mathrm{CO}_{2} \mathrm{H}$	84-4\%	1) +J		(., 11	0	N1'	
4.	1-Naphthyl	CN	85-90	1) +J	$\mathrm{C}_{1} 1 \mathrm{H}_{13} \mathrm{NO}_{2}$	($, 11, \mathrm{~N}$			
49		(C)EC	17-0.20)		(2111.0 ,	(.) 11			
i0)		CO.II	100-102	1) +J		(, 11	0	1	
. 1	2-Naphthy ${ }^{\text {d }}$	CN	142-143	1)		($\mathrm{C}, \mathrm{H}, \mathrm{N}$			
22		CO.11	1:3-1:3	1) - J	(:4 110	(1, 11	0.0.5	0	
π	Crochexy	$(1$	440.1		(1110 - 10.	($111, \mathrm{Cl}$			
54		CN	100:0.1:		(1,11:-NO.	($, 111, \mathrm{~N}$			
5		$\mathrm{CO}_{2} 1 \mathrm{H}$	$154(0.6)$			(C, H			

 24.1 : folum, 24.6. * Br: caled, 21.1: found, 20.5.
aryloxy; $\mathrm{R}^{\prime}=\mathrm{CN}$) by reaction with potassium cyanide in aqueous-alcoholic solution. Treatment of the latter with ethanolic HCl furnished the esters ($\mathrm{I}, \mathrm{R}=$ aryloxy; $R^{\prime}=$ COOFt) which were hydrolyzed to the acids ${ }^{2}\left(\mathrm{I}, \mathrm{R}=\right.$ aryloxy: $\left.\mathrm{R}^{\prime}=\mathrm{CO}, \mathrm{H}\right)$ in alkaline solution.

Interest was then turned to the preparation of related deoxy acids when it was found that 4 -(p-biphenylyl)3 -hydroxy-butyric acid ($\mathrm{I}, \mathrm{R}=p$-biphenylyl; $\mathrm{R}^{\prime}=$ $\mathrm{CO}_{2} \mathrm{H}$) was a very potent antiinflammatory agent. As a eonsequence of this important finding, a series of about 30 related 4 -ary-l-3-hydroxybutyric acids were prepared for biological testing (Table II).

The acids in Table II were prepared similarly starting
from the arylchlorohydrins ${ }^{3}\left(\mathrm{I}, \mathrm{R}=\operatorname{aryl} ; \mathrm{R}^{\prime}=\mathrm{Cl}\right)$.
The amides in Tables I and II were prepared by treatment of the appropriate nitriles with alkaline $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetone.

Pharmacology.-The antiinflammatory activity of the compounds was assessed by determining their ability to delay the development of erythema in guinea pig skin induced by exposure to uv radiation ${ }^{4}$ and to inhibit edema formation induced in the rat hind paw by subplantar injection of carrageenin. ${ }^{5}$ Preliminary tests were carried out at a dose level of $200 \mathrm{mg} / \mathrm{kg}$ po using groups of five animals for each compound. The criteria by which compounds were selected for further examination were (a) "protection" of at least four animals in the uv erythema test, and (b) a mean inhibition of edema formation of at least 30% as compared with a control group in the rat paw test. Such compounds were compared directly with phenylbutazone at varying dose levels in order to determine relative potencies. The most potent compound, 4 -(p-biphenylyl)- 3 -hydroxybutyric acid (67, Table II), was further examined for inhibition of granuloma formation induced in rats by subcutaneous implantation of cotton wool pellets, ${ }^{6}$ reduction of the febrile response of rats to bacterial endotoxin, ${ }^{7}$ and reduction of the frequency of "writhes" induced in mice by intraperitoneal injection of phenylquinone. ${ }^{8}$ In these three tests the potency of the compound relative to phenylbutazone was $3.5,2.5$, and 5.6, respectively. The detailed pharmacological examination of this compound is the subject of a separate publication. ${ }^{9}$

Structure-Activity Relationships.-The activities of the compounds in the uv erythema and rat paw tests are included in Tables I and II. The highest order of activity is associated with the unsubstituted p-biphenylyl nucleus, and its replacement by o-biphenylyl (cf. 31 and 26, Table I; 58 and 65, Table II), m-biphenylyl (cf. 62 and 67, Table II), α - or β-naphthyl (cf. $\mathbf{3 1}$ and $\mathbf{5 0}$ or 52, Table I; $\mathbf{6 7}$ and $\mathbf{1 1 6}$ or 120, Table II), or phenanthren-9-yl (cf. 67 and 123, Table II) yielded compounds of lower activity.

Substitution of either ring of the p-biphenylyl nucleus by alkyl (cf. 67 and 103, Table II), alkoxy (cf. 67 and 76, Table II), or halogen (cf. 31 and 33 or 39 , Table I; 67 and 70 or 73, Table II) gave less active compounds.

Replacement of the B ring in the p-biphenylyl compounds by alkyl (cf. 31 and 6, 8, 11, or 13, Table I; 65 and 5 or 17, 67 and 6,51, or 55, Table II), alkoxy (cf. 66 and 9,67 and $10,14,30,35$, or 40 , Table II), halogen (cf. 31 and 16, Table I; 67 and 22, 44, or 47, 65 and 42, 66 and 43, Table II), trifluoromethyl ($c f .67$ and 26, Table II), benzyl ($\mathbf{3 0}$ and 42, 31 and 43, Table I), benzoyl (cf. 30 and 46, 31 and 47, Table I), phenoxy (cf. 65 and 79, 67 and 80, Table II), cyclopentyl or cyclohexyl (cf. 65 and 84 or 87 , Table II), and cyclo-
(3) Y. M. Beasley, V. Petrow, O. Stephenson, and A. M. Wild, J. Pharm. Pharmacol., 11, 36 (1959).
(4) C. V. Winder, J. Wax, B. Burr, M. Been, and C. E. Roslere, Arch. Int. Pharmacodyn. Ther., 116, 261 (1958).
(5) C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol. Med., 111, 544 (1962).
(6) R. Meier, W. Schuler, and P. Desaulles, Experientia, 6, 469 (1950).
(7) C. A. Winter and G. W. Nuss, Toxicol. Appl. Pharmacol., 5, 247 (1963).
(8) L. C. Hendershot and J. Forsaith, J. Pharmacol. Exp. Ther., 125. 237 (1959).
(9) D. I. Barron, A. R. Copley, and D. K. Vallance, Brit. J. Pharmacol. 33, 396 (1968).
pentenyl, cyclohexenyl, or cycloheptenyl (cf. 67 and 91, $\mathbf{9 5}$, or 99, Table II) always yielded compounds of lower activity.

Alteration of the side chain had a marked effect on antiinflammatory activity and the aryloxy compounds in Table I were much less active than their aryl analogs in Table II (cf. 8, 13, 31, and 52, Table I, and 51, 55, 67 , and 120 , Table II, respectively).

The free acids were more active than their esters (cf. 12 and 13, 30 and 31, 42 and 43, Table I; 65 and 67, Table II) or amides (cf. 25 and 26, 29 and 31, Table I; 66 and 67, Table II).

Experimental Section

Melting points are uncorrected. The experiments described illustrate the general method of preparation of compounds listed in the tables. Where analyses are indicated only by symbols of the elements analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values.

3-o-Biphenylyloxy-2-hydroxypropyl Chloride.-A solution of o-hydroxybiphenyl (85.1 g) in 2,3-epoxypropyl chloride ($185^{\circ} \mathrm{g}$) containing pyridine (0.5 ml) as catalyst was heated at 95° for 18 hr when excess 2,3-epoxypropyl chloride was distilled at reduced pressure. The residual viscous liquid was dissolved in $\mathrm{CHCl}_{3}(300 \mathrm{ml})$ and the solution was shaken carefully with concentrated $\mathrm{HCl}(100 \mathrm{ml})$. The CHCl_{3} layer was washed acid free and the solvent was boiled off; the residual oil was distilled to yield the product, $114.5 \mathrm{~g}, \mathrm{bp} 1.52^{\circ}(0.3 \mathrm{~mm})$, which solidified slowly on standing. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}$.

1-o-Biphenylyloxy-2,3-epoxypropane.-A solution of the foregoing chlorohydrin (94 g) in $\mathrm{MeOH}(400 \mathrm{ml}$) was treated with a solution of $85 \% \mathrm{KOH}(26.2 \mathrm{~g})$ in $\mathrm{MeOH}(200 \mathrm{ml})$ at 25°. After 30 min the mixture was neutralized (AcOH) and diluted $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and the product (48.8 g) was isolated with CHCl_{3}. It had bp $120^{\circ}(0.1 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.

1-p-Biphenylyloxy-2,3-epoxypropane, obtained in 66% yield, had mp 90-92 (from MeOH). Anal. $\left(\mathrm{C}_{1} 5 \mathrm{H}_{44} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.

4-p-Biphenylyloxy-3-hydroxybutyronitrile.-A solution of 3-p-biphenylyloxy-2-hydroxypropyl chloride (52.4 g) in MeOH (500 ml) was treated with a solution of $96 \%_{\%} \mathrm{KCN}(16.0 \mathrm{~g})$ in the minimum of $\mathrm{H}_{2} \mathrm{O}$. The mixture was refluxed for 4 hr , concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$, and neutralized (AcOH) and the product was isolated with CHCl_{3}. It (38.0 g) had mp $118-120^{\circ}$ [from EtOAc-petroleum ether (bp 60-80 $)$.

Ethyl 4-p-Biphenylyloxy-3-hydroxybutyrate.-A solution of the foregoing nitrile (25.3 g) in $\mathrm{EtOH}(250 \mathrm{ml})$ was saturated with HCl gas and allowed to stand for 1 hr when it was refluxed for 4 hr , cooled, and resaturated with HCl gas; the heating was continued for 6 hr . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic extract was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, concentrated, and diluted with petroleum ether (bp 60-80 ${ }^{\circ}$) to yield the ester (24.3 g) which was purified by crystallization from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ and had mp 106-108 ${ }^{\circ}$.

4-p-Biphenylyloxy-3-hydroxybutyramide.-A stirred solution of 4 -p-biphenylyloxy-3-hydroxybutyronitrile (25.3 g) in acetone $(300 \mathrm{ml})$ was treated with $\mathrm{NaOH}(16 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml}) ; 30 \%$ $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mathrm{ml})$ was then added during 15 min with intermittent cooling to control the exothermic reaction. The mixture was then refluxed for 1 hr , concentrated to remove most of the acetone, diluted ($\mathrm{H}_{2} \mathrm{O}, 400 \mathrm{ml}$), and neutralized with dilute HCl . The product (14.4 g) had mp $190-192^{\circ}$ (from $75 \%_{c} \mathrm{EtOH}$).

4-p-Biphenylyloxy-3-hydroxybutyric Acid. (a) A suspension of the foregoing amide (3 g) in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml}$) and $\mathrm{EtOH}(20 \mathrm{ml})$ containing $\mathrm{NaOH}(5 \mathrm{~g})$ was heated under reflux for 90 min . The solution was acidified with dilute HCl to yield the product, mp 163-166 (from MeOH).
(b) Ethyl 4-p-biphenylyloxy-3-hydroxybutyrate (30 g) was heated with a solution of $\mathrm{NaOH}(8 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(.500 \mathrm{ml})$ for 1 hr , sufficient EtOH being added at first to give a clear solution. The solution was acidified with dilute HCl to yield the product, mp $163-166^{\circ}$ as above.

3-Bromo-4-n-butoxybiphenyl.-A solution of 3-bromo-4-hydroxybiphenyl (107.4 g) in EtOH (500 ml) containing 90% $\mathrm{KOH}(27.3 \mathrm{~g})$ was treated with $n-\mathrm{Bu}_{4} \mathrm{Br}(69 \mathrm{~g})$ and the mixture was heated under reflux for $\bar{a} \mathrm{hr}$. It was then cooled and diluted with $\mathrm{H}_{2} \mathrm{O}$ and the resultant oil was isolated with CHCl_{3}. It had

No.	\sim	-Sub 3	tituent at position-	5	R	$\begin{aligned} & \mathrm{Bp}(\mathrm{~mm}) \text { or } \\ & \mathrm{mp} .^{\circ} \mathrm{C} \end{aligned}$	Recrystn solvents ${ }^{*}$	Formula	Analyses	$\begin{gathered} \text { Cv erythelna } \\ \text { test }^{b} \end{gathered}$	Rat paw test ${ }^{b}$
67					$\mathrm{CO}_{2} \mathrm{H}$	151-152	D	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$	C, H	7.0	2.5
68	H	H	o-Chlorophenyl	H	Cl	150 (0.02)		$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}$	Cl		
69					CN	190 (0.0.5)		$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}$	C, $\mathrm{H}, \mathrm{Cl}, \mathrm{N}$		
70					$\mathrm{CO}_{2} \mathrm{H}$	100-102	$F+J$	$\mathrm{C}_{16} \mathrm{H}_{1} ; \mathrm{ClO}_{3}$	C, H, Cl	2.0	1.0
71	H	H	p-Chlorophenyl	H	CN	90-92	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}$	$\mathrm{C}, \mathrm{H}, \mathrm{Cl}, \mathrm{N}$		
72					COOEt	72-74	$\mathrm{O}+\mathrm{J}$	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{3}$	C, $\mathrm{H} ; \mathrm{Cl}^{\circ}$		
73					$\mathrm{CO}_{2} \mathrm{H}$	1.57-159	($\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}$	C, H, Cl	0.67	2.0
74	H	H	p-Methoxyphenyl	H	Cl	85-88	D +J	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{2}$	C, H		
75					CN	132-136	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$	N		
76					$\mathrm{CO}_{2} \mathrm{H}$	176-178	F'	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$	C, H	0.14	0.4
77	H	H	Pho	H	Cl	144 (0.1)		$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{2}$	Cl		
78					CN	160 (0.1)		$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$	C, H, N		
79					COOEt	171-174 (0.1)		$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$	C, H	0	1.0
80					$\mathrm{CO}_{2} \mathrm{H}$	83-8.7	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$	C, H	0	1.0
81	H	H	PhCH_{2}	H	COOMe	165 (0.1)		$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$	C, H	0	0
82	H	H	Cyclopentyl	H	Cl	120-122 (0.05)		$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}$			
83					CN	$1.50(0.1)$		$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$	C, H, N		
84					COOEt	145-147 (0.1)		$\mathrm{C}_{1} ; \mathrm{H}_{24} \mathrm{O}_{3}$	C, H	0	0
85	H	H	Cyclohexyl	H	Cl	130-132 (0.1)		$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClO}$	C, H, Cl		
86					CN	15.5 (0.1)		$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}$	C, H, N		
87					COOEt	150 (0.1)		$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$	C, H	0)
88	H	H	Cyelopent-1-enyl	H	Cl	100-101	K	$\mathrm{C}_{14} \mathrm{H}_{1}: \mathrm{ClO}$	C, H, Cl		
89					CN	77-78	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$	C, H, N		
90					COOEt	165-169 (0.15)		$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$	C, H		
91					$\mathrm{CO}_{2} \mathrm{H}$	153-156	$A+B$	$\mathrm{C}_{1} ; \mathrm{H}_{18} \mathrm{O}_{3}$	C, H	0.13	0.5
92	H	H	Cyclohex-1-enyl	H	Cl	103-104	K	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClO}$	C, H, Cl		
93					CN	104-105	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$	C, H, N		
94					COOEt	170 (0.1)		$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$	C, H		
95					$\mathrm{CO}_{2} \mathrm{H}$	148-150	G	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$	C, H	0.07	1.0
96	H	H	Cyclohept-1-enyl	H	Cl	150 (0.1)		$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClO}$	C, H, Cl		
97					CN	180-184 (0.1)		$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}^{\text {a }}$	C, H, N		
98					COOEt	171-174 (0.1)		$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$			
99					$\mathrm{CO}_{2} \mathrm{H}$	100-101	$F+J$	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$	C, H	0.07	0.67
100	Me	H	Ph	H	Cl	164 (0.05)		$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}$	C, $\mathrm{H} ; \mathrm{Cl}^{\text {f }}$		
101					CN	176 (0.03)		$\mathrm{C}_{17} \mathrm{H}_{1}-\mathrm{NO}$	H, N; C^{8}		
102					COOEt	194 (0.02)		$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$	C, H		
103					$\mathrm{CO}_{2} \mathrm{H}$	154-156	G	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$	C, H	0.13	0.5
104	H	Cl	Ph	H	Cl	$160(0.02)$		$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}$	Cl		
105					CN	190 (0.05)		$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}$	Cl, N		
106	MeO	H	H	Ph	Cl	165 (0.05)		$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{2}$	C, H, Cl		
107					CN	72-75	$E+J$	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$			
108					COOEt	178 (0.15)		$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{1}$	C, H		
109					$\mathrm{CO}_{2} \mathrm{H}$	121-123	F	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$	C, H	0	0
110	BuO	H	H	Ph	Cl	78-79	J	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClO}_{2}$	$\mathrm{C}, \mathrm{H}, \mathrm{Cl}$		
111					CN	176-180 (0.1)		$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$			
112					COOEt	182-186 (0.1)		$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}$			
113					$\mathrm{CO}_{2} \mathrm{H}$	124-125	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$	C, H	0.08	NT
114	1-Nap	thyl			CN	68-69	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}$	C, H, N		
115					COOEt	150 (0.25)		$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$	C, H		
116					$\mathrm{CO}_{2} \mathrm{H}$	110-111	F	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$	C, H	0	0
117	2-Nap	thyl			Cl	140 (0.05)		$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClO}$	C, H, Cl		
118					CN	174 (0.05)		$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}$	C, H, N		
119					COOEt	$158(0.25)$		$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}$	C, H		
120					$\mathrm{CO}_{2} \mathrm{H}$	126-128	F	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$	C, H	0.06	0.3
121	Phena	thre	-(9)-yl		Cl	114-116	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}$	C, H, Cl		
122					C ${ }^{+}$	119-121	$\mathrm{F}+\mathrm{J}$	$\mathrm{C}_{18} \mathrm{H}_{1 ;} \mathrm{NO}$	C, H, N		
123					$\mathrm{CO}_{2} \mathrm{H}$	160-162	A + C	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$	C, H	0	0

${ }^{a}$ See footnote a in Table I. ${ }^{b}$ Phenylbutazone (standard) $=1.0 ; \mathrm{NT}=$ not tested; $+=$ active at $200 \mathrm{mg} / \mathrm{kg}$ po. ${ }^{c} \mathrm{C}$: calcd, 65.5 ; found, 66.1. ${ }^{d} \mathrm{C}$: calcd, 64.8 ; found, $64.3 . \quad{ }^{\quad} \mathrm{Cl}:$ calcd, 11.15 ; found, $11.6 . \quad / \mathrm{Cl}$: calcd, 13.5 ; found, 13.0 . o C : calcd, 81.2 ; found, 80.7 .
bp $143-150^{\circ}(0.1 \mathrm{~mm})$, yield $93.4 \mathrm{~g}, \mathrm{mp} 45-47^{\circ}$ (from MeOH). Anal. ($\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}$) C, H, Br.
(a) 4-(Cyclopent-1-enyl)bromobenzene.-To a stirred solution of $p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ prepared from p-dibromobenzene (141 g) and $\mathrm{Mg}(14.4 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(850 \mathrm{ml})$ was added during 1 hr a solution of cyclopentanone (50.5 g) in $\mathrm{Et}_{2} \mathrm{O}(350 \mathrm{ml})$. The mixture was stirred for 3 hr and then decomposed by the careful addition of a concentrated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(140 \mathrm{~g})$. The ether layer was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the ether was
evaporated to vield an oil which was distilled at reduced pressure giving the crude carbinol (72 g), bp $120-140^{\circ}(0.1 \mathrm{~mm})$. This was dissolved in $\mathrm{AcOH}(400 \mathrm{ml})$ containing $\mathrm{Ac}_{2} \mathrm{O}(35 \mathrm{ml})$ and the mixture was heated under reflux for 3 hr . The excess AcOH was distilled off at reduced pressure, the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$, and the residual oil was isolated with CHCl_{3} giving the product (44.8 g), mp 91-93 (from EtOH), Anal. ($\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Br}$) C, H, Br.
(b) 1-Chloro-3-[p-(cyclopent-1-enyl)phenyl]propan-2-ol-To
a Grignard solution prepared from $\lambda \lg (4.7 \mathrm{~g})$ and 4 －（iychpent－ 1 － enyl）bromobenzene（ 38 g ）in a mixtare of $\mathrm{Et}_{2} \mathrm{O}$（ 235 ml ）and THF（ 95 ml ），a solution of 2，3－epoxypropyl chloride（ 31.5 g ） in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$ was added during 30 min with stiring ar room （emperature．After stirring for a further 30 min the mixtire was decomposed by the addition of $\bar{\sigma} \mathrm{VHCl}$ ．The ether layer was separated，washed（ $\left.\mathrm{H}_{2} \mathrm{O}\right)$ ，and dried（ $\mathrm{Nan⿻上丨}_{4}$ ）and the ether was distilled．The residual oil was distilled oo yield a frac（inn（L゙ゥ g． $b_{1} 120-155^{\circ}(0.1 \mathrm{~mm})$ ，which snlidified and lad mp $100-101^{\circ}$ （from ligroin）．
（c）1－Cyano－3－Ip－（cyclopent－1－enyl）phenyl｜propan－2－ol．－．．．A solution of the foregoing chlorohydrin（ 14.8 g ） in EtOH（ 150 ml ） was treated with a solution of $96 \% \mathrm{KCN}(5.1 \mathrm{~g})$ in $\mathrm{H}=(11 \mathrm{ml}$ and the mixture was heated under reflux for 90 min．If was then （rooled and diluted with iced $\mathrm{H}_{2} \mathrm{O}$ ）and de product was isolated
 ethel（bp 60－80 ${ }^{\circ}$ ）］．
（d）Ethyl 4－［p－（cyclopent－1－enyl）phenyl］－3－hydroxybutyrate was obtained when a solution of the foregoing nitrile（ 7.5 g ）in E（O）H（ 75 ml ）and $\mathrm{H}_{2} \mathrm{O}$（ 2 mI ）war santrated with HCl gas and then leated under reflux for 12 hr ．The ester（ 4.4 g ）isolated wi（h CHCl_{3} had bp $16^{\circ}-169^{\circ}$（ 0.15 mm ）．
（e）4－［p－（Cyclopent－1－enyl）phenyl］－3－hydroxybutyric Acid．－ A solntion of the foregoing ester（2．2 g）in oom EtOH－H．
（25 ml）containing Na()$](0.4 \mathrm{~g}$ ）was heared under reflux fol 1
hr．It was（hen cooled shghty and ponted with stirring inta excess warm，dilute HCl ．The mixare was cooled and the acid was collected．It（ 1.7 g ）had mp 153 ． 156°（from MeOH－H．．（o）．

4－（Cylohept－1－enyl）bromobenzene，plepared as dexribed fur 4－（cyropent－1－enyl）bromobenzene，hsing ryodnepanmate in
 $\left(\mathrm{C}_{13} \mathrm{H}_{1} \mathrm{Br}\right)(\mathrm{B}, \mathrm{II}, \mathrm{Br}$.
\mathbf{N}－（ β－Hydroxyethyl）－4－（ μ－biphenylyl）－3－hydroxybutyramide． A mixture of e hyl 4－（p－biphenvlyl）－3－hydroxybutyrate（ 10 g ）and o（hatolamine（ 10 m$)$ ）was heated on（he seam bath for 2 her when it wat rooled and－tirred with dilute $1 / \mathrm{Cl}$ ．The amide（x is）hard
 N－（0－Hydroxyethyl）－4－（ p－biphenylyloxy）－3－hydroxybuty－
 II，N．

N －（ β－Hydroxyethyl）－3－hydroxy－4－（2－naphthyloxy butyramide

Acknowledgments．The authors are indebted to I）r． 1＇．Feather，A．R．I．C．，Ir．I）．l＇．Hayman，A．R．I．C．． and Dr．C．B．Waekman，A．R．I．C．，for the preparation of some of the compounds listed in Table II and 10 Mr．G．Vincent for technical assistance．

Potential Antihypertensive Agents．II．＇Unsymmetrically 1，4－Disubstituted Piperazines．I

Raj Nandan Prasad，Leslie R．Hawkinh，avid Narin Tietje
Resrawh Depantment，Mbboll Laboratories Ldl．，Montreat．Quber；Canada

Recrived Jane 19，N1／6S

Abstract

Several unvmmetrically 1,4 －disubstinted piperazines have been prepared by reducing $1-a c y l-4-s u b s t i t u c e d$ piperazines，the latter having been obtained by the acylation of 1－alkyl－or 1－arylpiperazines．Alkylation of 1－amino－4－（o－methoxyphenyl）piperazine（2）gives 1 －antino－1－alkyl－4－（o－methoxyphenyl）piperazinium halide （5－8，12）．Some of the 4－substituted derivatives of 1－phenyl－or 1－（o－methoxyphenyl）piperazines show appreciable antihypertensive activities，but the $1-m e t h y-4-s u b s t i t u t e d$ piperazines cause no siguificant fall in blond pressure．

In continuation of our studies of compounds having antihypertensive properties，we have prepared and tested a large number of unsymmetrically 1,4 －disub－ stituted piperazines．

Chemistry．－The unknown 1－phenyl－4－aminopiper－ azine（1）was prepared by refluxing bis－β－chloroethyl aniline with hydrazine in ethanol．Preparation of 1－（o－methoxyphenyl）－4－aminopiperazine（2）was simi－ larly achieved．These compounds could also be pre－ pared by nitrosating the corresponding 1 －substituted piperazine with sodium nitrite and hydrochloric acid and reducing the 4 －nitrosopiperazine derivative with zinc dust in acetic acid．

Reaction of 2 with aromatic aldehydes resulted in the formation of the corresponding Schiff bases，e． 4. 3 （eq 1）．Hydrogenation of 3 in the presence of 10% Pd－－C gave 4．Attempted reduction of $\mathbf{3}\left(\mathrm{NaBH}_{4}\right.$ or LiAlH 44 ），or hydrogenation in the presence of PtO_{2} ，failed to give 4.

The reaction of 2 with benzyl chloride or benzyl iodide resulted in substitution on the 1－nitrogen atom to yield 5 and 6 （eq 2）．Compound 7 （and 8）was similarly obtained．Proof for the assignment of the structure of 5 （and 6）was found in the reaction of benzylhydrazine and bis（ β－chloroethyl）－o－anisidine（9） which yielded the hydrochloride 10 and could be

[^1]
（1）
converted to 5 by treatment with $\mathrm{NaHCO}_{3}\left(\mathrm{eq}_{\mathrm{q}} 2\right)$ ．
Hydrogenolysis of 5 （eq 3）in the presence of PtO_{2} gave 1－benzyl－4－（o－methoxyphenyl）piperazine（11）and ammonia．On the other hand，hydrogenolysis in the presence of $10 \% \mathrm{Pd}-\mathrm{C}$ gave 1 －amino－4－（ o－methoxy－ phenyl）piperazine（2）and toluene．
Substitution on the $\mathrm{N}-1$ position of 1 －amino－4－（o－ methoxyphenyl）piperazine（2）may be explained by the assumption that $N-1$ has the highest nucleophilic activity of the three nitrogen atoms in the molecule． The amino group in compound 2 can be visualized as a

[^0]: (15) This scheme was discussed informally by S. Irwin at a Gordon Research Conference, New London, N. H., 1959.
 (16) P. Visentini, Arch. Ital. Sci. Farmacol. 4, 16 (1954).
 (17) I. Setnikar and P. Tirone, Arzneimittel-Forsch., 16, 1146 (1966).
 (18) C. Bianchi, Brit. J. Pharmacol., 11, 104 (1956).
 (19) C. Bianchi and J. Franceschini, ibid., 9, 280 (1954)
 (20) I. Setnikar, W. Murmann, and M. T. Ravasi, Arch. Intern. Pharmacodyn., 131, 187 (1961).
 (21) E. Massarani, D. Nardi, L. Degen, and M. J. Magistretti, J. Med. Chem., 9, 617 (1966).

[^1]: （1）F．Fried，R．N．Prasad，abl A．P．（annce，／．Hed．Chem．，10，2： （1967），may be considered as paper 1 ．

